

Mats Rynge: Workflows

USC Information Sciences Institute
www.isi.edu

Questions

● How pegasus takes care of protected data

● Have a few questions about feasibility of
supporting workflow systems on a floating
vessel

Trustworthy Data Working Group
Aims to provide guidance on
data security for open science,
to improve scientific productivity
and trust in scientific results.
Open science relies on data
integrity, collaboration, high
performance computing, and
scalable tools to achieve results,
but currently lacks effective
cybersecurity programs that
address the trustworthiness of
scientific data.

Community Survey: Scientific Data Security
Concerns and Practices

• 111 participants

• Report available: https://doi.org/10.5281/zenodo.3906865

PEARC’20 Workshop on Trustworthy Scientific
Cyberinfrastructure

Next: creating a “Guidance for Science Projects and
Cyberinfrastructure Developers” document

https://doi.org/10.5281/zenodo.3906865

Protected Data?

Trustworthy Data?

Integrity - The data has not been altered.
Reproducibility - The data can be re-created, or the associated scientific results are replicable.
Provenance - The data’s origin and lineage can be readily established.
Methodology - The processes and inputs used to create the data are well-established and accepted by the community.
Responsible stewardship - The ownership of the data is well managed and can be transferred.
Accuracy - The data is free from error.
Reputation - The data was generated by a credible or trusted source.
Significance - The data enables future research directions (with associated funding/support).
Availability - The data is there when I need it
Authorization - Way to vet and grant access
Confidentiality - Ensure repository hides/masks PII or other sensitive information from those not granted access
Accountability - Provision for metadata to describe the data, including provenance, versioning

Integrity Protection for Scientific Workflow
Data: Motivation and Initial Experiences

Mats Rynge, Karan Vahi, Ewa Deelman Information Sciences Institute - University of Southern California

Anirban Mandal, Ilya Baldin RENCI - University of North Carolina, Chapel Hill

Omkar Bhide, Randy Heiland, Von Welch, Raquel Hill Indiana University

William L. Poehlman, F. Alex Feltus Clemson University

The SWIP Project is supported by
the National Science Foundation
under Grant 1642070, 1642053,
and 1642090.

Pegasus Workflow Management System, Production Use

Last 12 months: Pegasus users ran 240K workflows, 145M jobs

Majority of these include data transfers, using LAN, the Internet, local and remote storage

https://pegasus.isi.edu/ 7

https://pegasus.isi.edu/

Scientific Workflow Integrity with Pegasus
NSF CICI Awards 1642070, 1642053, and 1642090

Goals:

Provide additional assurances that a
scientific workflow is not
accidentally or maliciously
tampered with during its execution.

Allow for detection of modification
to its data or executables at later
dates to facilitate reproducibility.

Integrate cryptographic support for
data integrity into the Pegasus
Workflow Management System.

PIs: Von Welch, Ilya Baldin, Ewa Deelman, Raquel Hill

Team: Omkar Bhide, Rafael Ferrieira da Silva, Randy Heiland,

Anirban Mandal, Rajiv Mayani, Mats Rynge, Karan Vahi

8

Our Talk

● Introduction and
Motivations

● Our Approach

● Current Status

● Welcome to the Jungle

● Integrity Issues in the Wild

● Future Work

9

Data Integrity

010110101010

010100101010

10

Challenges to Scientific Data Integrity

Modern IT systems are not
perfect - errors creep in.

At modern “Big Data” sizes
we are starting to see
checksums breaking down.

Plus there is the threat of
intentional changes:
malicious attackers, insider
threats, etc.

User Perception: “Am I not already protected? I have heard about TCP checksums,
encrypted transfers, checksum validation, RAID and erasure coding – is that not enough?”

11

Motivation:
CERN/NEC Studies of
Disk Errors

Examined Disk, Memory, RAID 5
errors.

“The error rates are at the 10-7
level, but with complicated
patterns.” E.g. 80% of disk errors
were 64k regions of corruption.

Explored many fixes and their often
significant performance trade-offs.

A similar study by NEC found that 1
in 90 SATA drives will experience
silent data corruption.

https://indico.cern.ch/event/13797/contributions/1362288/attachments/115080/163419/Data_integrity_v3.pdf
https://www.necam.com/docs/?id=54157ff5-5de8-4966-a99d-341cf2cb27d3

12

https://indico.cern.ch/event/13797/contributions/1362288/attachments/115080/163419/Data_integrity_v3.pdf
https://www.necam.com/docs/?id=54157ff5-5de8-4966-a99d-341cf2cb27d3

Motivation:
Network Corruption

Network router software
inadvertently corrupts TCP data
and/or checksum!

XSEDE and Internet2 example
from 2013.

Second similar case in 2017:
University of Chicago network
upgrade caused data corruption
for the FreeSurfer/Fsurf project.

https://www.xsede.org/news/-/news/item/6390

Brocade TSB 2013-162-A

13

https://www.xsede.org/news/-/news/item/6390

Motivation:
Software failures

Bug in StashCache data transfer software would occasionally
cause silent failure (failed but returned zero).

Failures in the final staging out of data were not detected.

The workflow management system, believing workflow was
complete, cleaned up. With the final data being incomplete
and all intermediary data lost, ten CPU-years of computing
came to naught.

14

How is this an data integrity issue? The workflow system should have verified that the
data at the storage system after the transfer, is the expected data.

Our Talk

● Introduction and Motivations

● Our Approach

● Current Status

● Welcome to the Jungle

● Integrity Issues in the Wild

● Future Work

15

Our High Level Plan...

• Workflow Management Systems (WMS)
are great places to tackle data integrity.

• They understand what data is created and
ingested and do not mind tedious tasks
such as generating and checking
checksums.

• Placement is important within the
workflow of generate/validate checksums

• Pegasus WMS is widely used (LIGO, SCEC,
SoyKB, Montage, etc.) by the scientific
community and is the target of our
improvements.

16

Application-level Checksums – SHA256

• Application-level checksums (hashes) allow for detection of changes.

• Explored some more advanced solutions, but at the end simplicity won

• Checksums already in use by many data transfer applications: scp,
Globus/GridFTP, some parts of HTCondor, etc, but SWIP is focusing on
end-to-end as well as over longer time periods

e.g. using a SHA in Python:
>>> hashlib.sha256(b"The Answer to the Ultimate Question of Life, the Universe, and Everything is 42").hexdigest()
'8a72856cf94464dd641f0a2620ab604dd7a3f50293784a3a399acf6dc5b651cb'

>>> hashlib.sha256(b"The Answer To the Ultimate Question of Life, the Universe, and Everything is 42").hexdigest()
'a39be9fd272f2569aa95a07134a55f032ecb5c51cef6d66fe4032ec30bf4f1b6'

>>> hashlib.sha256(b"The Answer is 42").hexdigest()
'cbf296e175f02156cd60d6bf93aebd92893e72a0c4c48eadef092d0dc7e28fc1'

17

Our Talk

● Introduction and Motivations

● Our Approach

● Current Status

● Welcome to the Jungle

● Integrity Issues in the Wild

● Future Work

18

Integrity validation is on by default
since the Pegasus 4.9.0 release (Oct
31st, 2018). Users who upgrade will
automatically get the protection, but
can opt out.

Sharing of detailed monitoring data
with the Pegasus team is off by
default. Users can opt-in. (We will
come back to this at the end of the
talk)

19

Automatic Integrity Checking in Pegasus

Pegasus performs integrity checksums on
input files right before a job starts on the
remote node.

● For raw inputs, checksums specified in the input
replica catalog along with file locations

● All intermediate and output files checksums are
generated and tracked within the system.

● Support for sha256 checksums

Job failure is triggered if checksums fail

20

Our Talk

● Introduction and Motivations

● Our Approach

● Current Status

● Welcome to the Jungle

● Integrity Issues in the Wild

● Future Work

21

How do you know your integrity protection is working?

• Imagine the following:
You finish adding integrity
protection to your software. You
run a workflow and all goes
smoothly.

• Was there no integrity problem or
did you just fail to detect it?

• How do you reliably and repeatedly
test integrity protection?

22

Confidence in the implementation: Bamboo

• At commit, for each target platform:

1. Build binary, workers, RPMs, DEBs,

2. Run unit tests for Java, Python, and C
components

3. ~ 100 unit tests

• Nightly:

1. Run functional tests. These are full
workflows, configured to provide good
code coverage

2. ~ 85 workflows

23

Enter the Chaos Jungle!
https://github.com/RENCI-NRIG/chaos-jungle

Inspired by Netflix’s Chaos Monkey.
https://github.com/Netflix/chaosmonkey

Goal of Chaos Jungle (CJ) is to introduce different
kinds of impairments into the virtual infrastructure
- network, compute, storage.

The RENCI ORCA software creates virtual
infrastructure on ExoGENI testbed. CJ software
introduces impairments into data transfers.

We get virtual infrastructure that intentionally
corrupts data

Randomly or predictably?

Now we can test how software runs under bad
conditions.

https://commons.wikimedia.org/wiki/File:Tioman_Rainforest.JPG

24

https://github.com/RENCI-NRIG/chaos-jungle
https://github.com/Netflix/chaosmonkey

Chaos Jungle

Uses Linux eBPF (extended Berkeley Packet
Filters) functionality

Introduces a small eBPF program into the
kernel attaching to either TC filter or XDP hooks

Inspects received packets and modifies some of
those that match flow descriptors without
affecting the appropriate checksums.

The packets thus look valid on the receiving
end, however contain invalid data.

Fast and performant.

https://github.com/RENCI-NRIG/chaos-jungle

25

https://github.com/RENCI-NRIG/chaos-jungle

Chaos Jungle Experiment Setup

26

27

Our Talk

● Introduction and Motivations

● Our Approach

● Current Status

● Welcome to the Jungle

● Integrity Issues in the Wild

● Future Work

28

Production Workflows

• Large workflows with lots of
data transfers

• “Unprotected” protocols - no
SSL or other protocol level
protections

• Open Science Grid - WAN
transfers

• Collecting the data is on an
opt-in basis

29

Initial Results with Integrity Checking on

• OSG-KINC workflow (50,606 jobs) encountered 60 integrity errors in the wild
(production OSG). The problematic jobs were automatically retried and the
workflow finished successfully.

• The 60 errors took place on 3 different hosts. The first one at UColorado, and
group 2 and 3 at UNL hosts.

• Error Analysis (by hand)

• 1 input file error at University of Colorado.

• 3 input file (kinc executable) errors on one node at University of Nebraska. The
timespan across the failures was 16 seconds. We suspect that the node level
cache got corrupted.

• 56 input file errors on a different compute nodes at University of Nebraska. The
timespan across the failures was 1,752 seconds. We suspect that the site level
cache got corrupted.

30

cacr.iu.edu/projects/swip/

Initial Results – VERITAS / Nepomuk Otte, GATech
Seeing very small, but steady stream of corrected integrity errors from reporting back to Pegasus dashboard.

For VERITAS, ~.04% of transfers fail with integrity errors. (~1 / 2500 transfers)

Cause uncertain
(diagnosis is harder
than detection).

Possibly errors in
http based transfers
(s3 protocol against
CEPH)

31

Checksum Overheads
• We have instrumented overheads and are available to end users via pegasus-statistics.

• Other sample overheads on real world workflows

• Ariella Gladstein’s population modeling workflow

• A 5,000 job workflow used up 167 days and 16 hours of core hours, while spending 2 hours and 42 minutes
doing checksum verification, with an overhead of 0.068%.

• A smaller example is the Dark Energy Survey Weak Lensing Pipeline with 131 jobs.

• It used up 2 hours and 19 minutes of cumulative core hours, and 8 minutes and 43 seconds of checksum
verification. The overhead was 0.062%.

32

1000 Node OSG Kinc Workflow
Overhead of 0.054 % incurred

Our Talk

● Introduction and Motivations

● Our Approach

● Current Status

● Welcome to the Jungle

● Integrity Issues in the Wild

● Future Work

33

Challenges

• Can we do more than know
“something changed?”

• Detecting error easier than
diagnosing error.

• Balance performance / integrity
trade-off?

• How do we handle storage without
compute capabilities?

• Long data life: today’s cryptographic
algorithms will probably not last as long
as we need the science data.
E.g. what threats will Quantum computing bring?

• When do we hit limits of cryptographic
algorithms (collisions)?

• Are all errors in all types of data of
equal concern?

34

Going Forward: Integrity Introspection for Scientific Workflows (IRIS)

• National Science Foundation CICI IRIS Grant #1839900

• SWIP addresses integrity checking making sure that workflow computations are
protected from integrity errors, but
— Doesn’t address analysis of integrity errors discovered, i.e. tracing the source of error or doing root

cause analysis to remedy the problem.

• IRIS goal: Detect, diagnose, and pinpoint the source of unintentional integrity
anomalies in scientific workflow executions on distributed cyberinfrastructure.
(integrity analysis)

35

IRIS Overall Approach

Train ML algorithms on controlled
testbeds and validate on national CI by
integrating framework with Pegasus.

Engage with science application partners
to deploy the analysis framework. IRIS proposed framework

IRIS Overview

36

We thank the National Science Foundation for funding this work (Grants
1642070, 1642053, 1642090). Views expressed may not necessarily be the

views of the NSF. Thanks to Eli Dart for Brocade TSB details.

Thanks
!

37

Pegasus - a dHTC friendly
workflow manager

Mats Rynge
rynge@isi.edu

https://pegasus.isi.edu

Users describe their pipelines in a portable format called
Abstract Workflow, without worrying about low level
execution details.

Workflows are DAGs
• Nodes: jobs, edges: dependencies
• No while loops, no conditional branches
• Jobs are standalone executables
• All data is tracked

Pegasus takes this and generates an executable
workflow

• Data management tasks added
• Transforms the workflow for performance and

reliability
• HTCondor DAGMan DAG

Planning occurs before execution

transformation

executables (or programs), but
no paths

 logical filename (LFN)
platform independent (abstraction)

Abstract workflow

Removes
unused data

Executable
workflow

cleanup job

stage-in job

stage-out job

registration job

Transfers the workflow
 input data

Transfers the workflow
 output data

Pegasus Concepts

40

• New and fresh Python3 API to compose, submit and monitor
workflows, and configure catalogs

• New Catalog Formats

• Python 3
• All Pegasus tools are Python 3 compliant

• Python PIP packages for workflow composition and monitoring

• Zero configuration required to submit to local HTCondor pool.

• Data Management Improvements
• New output replica catalog that registers outputs including file

metadata such as size and checksums

• Improved support for hierarchical workflows

• Major documentation improvements
• https://pegasus.isi.edu/docs/5.0.0dev/index.html

Pegasus
5.0Automate, recover, and debug scientific
computations

Com
ing soon! Beta1 is out.

https://pegasus.isi.edu/docs/5.0.0dev/index.html

Optimizations

Last 12 months: Pegasus users ran 240K workflows, 145M jobs

Majority of these include data transfers, using LAN, the Internet, local and remote storage

https://pegasus.isi.edu/

Pegasus Workflow Management System, Production Use

https://pegasus.isi.edu/

HTCondor I/O (HTCondor pools, OSG, …)

Worker nodes do not share a file system

Data is pulled from / pushed to the submit host
via HTCondor file transfers

Staging site is the submit host

Non-shared File System (Clouds, OSG, …)

Worker nodes do not share a file system

Data is pulled / pushed from a staging site,
possibly not co-located with the computation

Shared File System (HPC sites, XSEDE, Campus
clusters, …)

I/O is directly against the shared file system

Data Staging Configurations

Directory creation, file removal

• If protocol can support it, also used for cleanup

Two stage transfers between incompatible protocols

• e.g., GridFTP to S3 is executed as: GridFTP to local file, local file to S3

Parallel transfers

Automatic retries

Credential management

• Uses the appropriate credential for each site and each protocol (even 3rd
party transfers)

HTTP
SCP
GridFTP
Globus Online
iRods
Amazon S3
Google Storage
SRM
FDT
Stashcp
Rucio
cp
ln -s

Pegasus’ internal data transfer tool with support for a number of
different protocols

pegasus-transfer

Containers are data too!

Users can specify to use images from Docker Hub, Singularity Library, or a file using URLs

The image is pulled down as a tar file as part of data stage-in jobs in the workflow

• The exported tar file / image file is then transferred to the job as any other piece of data
• Motivation: Avoid overwhelming Docker Hub/Singularity Library/… with by repeatedly requesting

the same image
• Motivation: Optimize workflow data placement and movement

Symlink against a container image if available on shared file systems. For example,
CVMFS hosted images on Open Science Grid

Advanced LIGO –
Laser Interferometer

Gravitational Wave
Observatory

40,000 compute tasks
Inputs files: 1,100

Output files: 63
Processed Data: 725 GB

Executing on LIGO Data Grid, EGI,
Open Science Grid and XSEDE

Automatic Integrity Checking

Pegasus performs integrity checksums on
input files right before a job starts,
ensuring the computation is on the
expected piece of data

● For inputs from external sources,
checksums specified in the input
replica catalog along with file
locations, or generated first time
we encounter the file

● All intermediate and output files
checksums are generated and
tracked within the system.

Checksums validation failures is a job
failure

VERITAS / Nepomuk Otte, GATech
Seeing very small, but steady stream of corrected integrity errors from reporting back to Pegasus dashboard.

For VERITAS, ~.04% of transfers fail with integrity errors. (~1 / 2,500 transfers)

Cause uncertain

(diagnosis is harder

than detection).

Possibly errors in

http based transfers

(s3 protocol against

CEPH)

Pegasu
s
Automate, recover, and debug scientific computations.

Get Started
Pegasus Website

https://pegasus.isi.edu

Users Mailing List

pegasus-users@isi.edu

Support

pegasus-support@isi.edu

est. 2001

Pegasus Online Office Hours
https://pegasus.isi.edu/blog/online-pegasus-office-hours/

Bi-monthly basis on second Friday of
the month, where we address user
questions and also apprise the
community of new developments

See you at 1PM EST for
CI/CS Workshop’s

Panel: Ups and Downs of Cloud
Computing in Open Science

