

End to End Workflow Monitoring and
Execution

Ryan Tanaka
Programmer Analyst

USC Information Sciences Institute

The Pegasus Workflow Management System

● Bridges the scientific domain and execution
environment by mapping high level workflow
descriptions onto distributed resources

● Enables scientists to:

○ Automate their work, as portable workflows

○ Recover from failures at runtime

○ Debug failures in their computations

● Built on top of HTCondor, a proven DHTC workhorse

Pegasus

Outline

● Introducing the Pegasus WMS

● Concepts

● Features

● Production Use

Workflows as DAGs

● Workflows are multi-step computational tasks organized as
directed acyclic graphs (DAG)

● Define abstract workflow using one of our Python, Java, or
R APIs

○ Abstract in the sense that users need not map jobs to resources or
create file transfer jobs for input and output files

○ Pegasus will plan the abstract workflow into an executable workflow

● Example..

Defining Workflow Inputs
fa = File("f.a").add_metadata(creator ="ryan")
rc = ReplicaCatalog() .add_replica("local", fa, Path(".").resolve() / "f.a")

preprocess = Transformation(
 "preprocess",
 site ="condorpool",
 pfn ="/usr/bin/pegasus-keg" ,
)

findrange = Transformation(
 "findrange",
 site ="condorpool",
 pfn ="/usr/bin/pegasus-keg" ,
)

analyze = Transformation(
 "analyze",
 site ="condorpool",
 pfn ="/usr/bin/pegasus-keg" ,
)
tc = TransformationCatalog() .add_transformations(preprocess, findrange, analyze)

fa = File("f.a").add_metadata(creator ="ryan")
rc = ReplicaCatalog() .add_replica("local", fa, Path(".").resolve() / "f.a")

preprocess = Transformation(
 "preprocess",
 site ="condorpool",
 pfn ="/usr/bin/pegasus-keg" ,
)

findrange = Transformation(
 "findrange",
 site ="condorpool",
 pfn ="/usr/bin/pegasus-keg" ,
)

analyze = Transformation(
 "analyze",
 site ="condorpool",
 pfn ="/usr/bin/pegasus-keg" ,
)
tc = TransformationCatalog() .add_transformations(preprocess, findrange, analyze)

Defining Workflow Executables

wf = Workflow("blackdiamond")

Defining the Workflow

wf = Workflow("blackdiamond")

fb1 = File("f.b1")
fb2 = File("f.b2")
job_preprocess = Job(preprocess)\
 .add_args("-a", "preprocess", "-T", "3", "-i", fa, "-o", fb1, fb2)\
 .add_inputs(fa)\
 .add_outputs(fb1, fb2)

Defining the Workflow

wf = Workflow("blackdiamond")

fb1 = File("f.b1")
fb2 = File("f.b2")
job_preprocess = Job(preprocess)\
 .add_args("-a", "preprocess", "-T", "3", "-i", fa, "-o", fb1, fb2)\
 .add_inputs(fa)\
 .add_outputs(fb1, fb2)

fc1 = File("f.c1")
job_findrange_1 = Job(findrange)\
 .add_args("-a", "findrange", "-T", "3", "-i", fb1, "-o", fc1)\
 .add_inputs(fb1)\
 .add_outputs(fc1)

Defining the Workflow

wf = Workflow("blackdiamond")

fb1 = File("f.b1")
fb2 = File("f.b2")
job_preprocess = Job(preprocess)\
 .add_args("-a", "preprocess", "-T", "3", "-i", fa, "-o", fb1, fb2)\
 .add_inputs(fa)\
 .add_outputs(fb1, fb2)

fc1 = File("f.c1")
job_findrange_1 = Job(findrange)\
 .add_args("-a", "findrange", "-T", "3", "-i", fb1, "-o", fc1)\
 .add_inputs(fb1)\
 .add_outputs(fc1)

fc2 = File("f.c2")
job_findrange_2 = Job(findrange)\
 .add_args("-a", "findrange", "-T", "3", "-i", fb2, "-o", fc2)\
 .add_inputs(fb2)\
 .add_outputs(fc2)

Defining the Workflow

wf = Workflow("blackdiamond")

fb1 = File("f.b1")
fb2 = File("f.b2")
job_preprocess = Job(preprocess)\
 .add_args("-a", "preprocess", "-T", "3", "-i", fa, "-o", fb1, fb2)\
 .add_inputs(fa)\
 .add_outputs(fb1, fb2)

fc1 = File("f.c1")
job_findrange_1 = Job(findrange)\
 .add_args("-a", "findrange", "-T", "3", "-i", fb1, "-o", fc1)\
 .add_inputs(fb1)\
 .add_outputs(fc1)

fc2 = File("f.c2")
job_findrange_2 = Job(findrange)\
 .add_args("-a", "findrange", "-T", "3", "-i", fb2, "-o", fc2)\
 .add_inputs(fb2)\
 .add_outputs(fc2)

fd = File("f.d")
job_analyze = Job(analyze)\
 .add_args("-a", "analyze", "-T", "3", "-i", fc1, fc2, "-o", fd)\
 .add_inputs(fc1, fc2)\
 .add_outputs(fd)

Defining the Workflow

● Workflow planning process

○ Data reuse module will optionally prune jobs for
which output files already exist

○ Task clustering optimizations may be performed
for small independent jobs

○ Mapping jobs onto physical compute resources

○ Add auxiliary jobs for data staging, cleanup, file
registration, etc.

● Generated executable workflow submitted
to through HTCondor to be run

Workflow Planning

● Workflow planning process

○ Data reuse module will optionally prune jobs for
which output files already exist

○ Task clustering optimizations may be performed
for small independent jobs

○ Mapping jobs onto physical compute resources

○ Add auxiliary jobs for data staging, cleanup, file
registration, etc.

● Generated executable workflow submitted
to through HTCondor to be run

f.c2 already exists
somewhere

Workflow Planning

● Workflow planning process

○ Data reuse module will optionally prune jobs for
which output files already exist

○ Task clustering optimizations may be performed
for small independent jobs

○ Mapping jobs onto physical compute resources

○ Add auxiliary jobs for data staging, cleanup, file
registration, etc.

● Generated executable workflow submitted
to through HTCondor to be run

Workflow Planning

● Workflow planning process

○ Data reuse module will optionally prune jobs for
which output files already exist

○ Task clustering optimizations may be performed
for small independent jobs

○ Mapping jobs onto physical compute resources

○ Add auxiliary jobs for data staging, cleanup, file
registration, etc.

● Generated executable workflow submitted
to through HTCondor to be run

Workflow Planning

Outline

● Introducing the Pegasus WMS

● Concepts

● Features

● Production Use

● HTCondor I/O (HTCondor pools, OSG, ...)
○ Worker nodes do not share a file system

○ Data is pulled from/pushed to the submit host via HTCondor file transfers

○ Submit host used as staging site

● Non-shared File System (Clouds, OSG, …)
○ Worker nodes do not share a file system

○ Data is pulled / pushed from a staging site, possibly not co-located with the computation

● Shared File System (HPC sites, XSEDE, campus clusters, …)
○ I/O directly against the shared file system

Data Staging Configurations

● Directory creation, file removal

● Two stage transfers between incompatible protocols

○ E.g., GridFTP to S3 is executed as: GridFTP to local file, local
file to S3

● Parallel transfers

● Automatic retries

● Credential management

HTTP
SCP
GridFTP
Globus Online
iRods
Amazon S3
Google Storage
SRM
FDT
Stashcp
Rucio
cp
ln -s

pegasus-transfer internal file transfer utility

● Pegasus automatically performs
integrity checksums on input files right
before jobs begin

○ Checksums can be specified for inputs
coming from external sources

○ All intermediate and output files have
checksums which are generated and
tracked within the system

● Checksum validation failure results in
job failure

Automatic Integrity Checking

● pegasus-status
○ View current status of running workflow

○ View summary of jobs and sub workflows

● pegasus-analyzer
○ View errors from any failed jobs

● pegasus-statistics

○ View summary of workflow statistics

○ Succeeded jobs, failed jobs, retries, workflow
walltime, etc.

$ pegasus-status -l /Workflow/dags/directory
STAT IN_STATE JOB
Run 07:01 level-3-0
Run 06:25 |-sleep_ID000005
Run 06:20 _subdax_level-2_ID000004
Run 05:44 |-sleep_ID000003
Run 05:39 _subdax_level-1_ID000002
Run 05:03 _sleep_ID000001
Summary: 6 Condor jobs total (R:6)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 0 0 0 1 0 1 0 50.0 Running level-2_ID000004/level-1_ID000002/level-1-0.dag
 0 0 0 2 0 1 0 33.3 Running level-2_ID000004/level-2-0.dag
 0 0 0 3 0 1 0 25.0 Running *level-3-0.dag
 0 0 0 6 0 3 0 33.3 TOTALS (9 jobs)
Summary: 3 DAGs total (Running:3)

Monitoring and Debugging Tools CLI

Monitoring and Debugging Tools dashboard

Monitoring and Debugging Tools AMQP endpoint

Monitoring and Debugging Tools AMQP endpoint

Ensemble Manager workflow management & dynamic triggering

● Service for managing collections of
workflows called ensembles

● Allows for throttling of concurrent planning
and running workflows

● Support for triggering of new workflow runs
based on arrival of new input files which
match one or more given patterns

Outline

● Introducing the Pegasus WMS

● Concepts

● Features

● Production Use

LIGO PyCBC Workflows for Gravitational Wave Science

● Laser Interferometer Gravitational Wave Observatory
○ Facility for gravitational wave research

○ Methods:

■ PyCBC software package

■ Pegasus WMS workflows

■ Compute using OSG, XSEDE, etc.

 What do these workflows look like..

0.2 Second before the black holes collide.
Image credit: SXS/LIGO

LIGO PyCBC Workflows for Gravitational Wave Science

● Advanced PyCBC Workflows
○ 40,000 compute tasks

○ 1,100 input files

○ 63 output files

○ 725 GB processed data

○ Compute: LIGO Data Grid, OSG, EGI, XSEDE

Advanced LIGO pyCBC Workflow. Image Credit: Samantha
Usman, Duncan Brown et al

LIGO PyCBC Workflows for Gravitational Wave Science

● Plots typically generated as part of post
run analysis

● Using the AMQP data collection setup,
these charts are able to be updated live as
jobs complete, affording LIGO researchers
better monitoring capabilities of the PyCBC
workflow runs

Other Production Use
In the last 12 months, Pegasus users ran 240K workflows, 145M jobs

XENONnT - Dark Matter Search

SCEC CyberShake

Epigenomics (USC)

Pegasus est. 2001
Automate, recover, and debug scientific computations

Get Started

Pegasus Website
https://pegasus.isi.edu/

Users Mailing List
pegasus-users@isi.edu

Pegasus Website
pegasus-support@isi.edu

Pegasus Online Office Hours
https://pegasus.isi.edu/blog/online-pegasus-office-hours

Bi-monthly basis on the second Friday of the
month, where we address user questions
and also apprise the community of new
developments.

Pegasus5.0 com
ing soon! Beta1 is out.

https://pegasus.isi.edu/
https://pegasus.isi.edu/blog/online-pegasus-office-hours

Questions?

Thank you!

tanaka@isi.edu

